دنبال کننده ها

۱۳۹۷ فروردین ۲۰, دوشنبه

Tensorflow evaluation

[ad_1]

I am running a tensor flow model and trying to understand its performance. However, I am not sure about some of the metrics in the results. I have used the Linear classifier using tf.estimator.LinearClassifier. The code and results are attached below:



The model is:



def build_estimator(model_dir, model_type):
wide_columns, deep_columns = build_model_columns()
run_config = tf.estimator.RunConfig().replace(session_config=tf.ConfigProto(device_count='GPU': 0))



if model_type == 'wide':
return tf.estimator.LinearClassifier(
model_dir=model_dir,
feature_columns=wide_columns,
config=run_config)


And the model.evaluate method is:



for n in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
model.train(input_fn=lambda: input_fn(
FLAGS.train_data, FLAGS.epochs_per_eval, True, FLAGS.batch_size))

results = model.evaluate(input_fn=lambda: input_fn(
FLAGS.test_data, 1, False, FLAGS.batch_size))


I want to know what the metric auc_precision_recall: 0.998951 is in the model.evaluate method. Is it auc or precision or recall or any of the combination of these?



[ad_2]

لینک منبع